United States Patent

US006601169B2

(12) (10) Patent No.: US 6,601,169 B2
Wallace, Jr. et al. @#5) Date of Patent: Jul. 29, 2003
(549) KEY-BASED SECURE NETWORK USER 5,822,676 A * 10/1998 Hayashi et al. 455/4.2
STATES 5.864,843 A * 171999 Carino, Jr. et al. 707/4
(76) TInventors: Clyde Riley Wallace, Jr., 5412 Savoy 5919289 A+ 7/1999 Misawa et al.cco....... 96/203
Ct., Cape Coral, FL (US) 33904,
Timothy Mark Thompson, 4523 SE. * cited by examiner
6™ P1., Cape Coral, FL (US) 33904
(*) Notice: Subject. to any disclaimer,. the term of this Primary Examiner—Thomas R. Peeso
patent is extended or adjusted under 35
US.C. 154(b) by 153 days. (57) ABSTRACT
(21) Appl. No.: 10/003,736 A server and a computer are connected to a network. User
(22) Filed: Oct. 31, 2001 data may be used to establish a state between a server and
. L. a user operating the computer. Key-based secure network
(65) Prior Publication Data user states includes encrypting user data with a crypto-
US 2002/0152378 Al Oct. 17, 2002 graphic key; embedding, into the encrypted user data, the
L cryptographic key or reference data associated with the
Related U.S. Application Data cryptographic key; storing the encrypted user data with
(63) Continuation of application No. 09/545,009, filed on Apr. 7, embedded key data in a cookie; and sending the cookie to a
2000, which is a continuation of application No. 09/475,638, computer; such that subsequently, a secure state between the
filed on Dec. 30, 1999, now abandoned. server and the user is established by receiving the cookie
(51) Int. CL7 oo, GO6F 1/24 from the computer; extracting, from the cookie, the
(52) US.Cl .ot 713/151; 713/168 encrypted user data and embedded key data; decrypting,
(58) Field of Searchc.cccoceuvveiine. 713/151, 161, using said key data, the encrypted user data; and establishing
713/164, 166, 168 the secure state between the server and the user based on the
(56) References Cited decrypted user data. Key data is the cryptographic key or

U.S. PATENT DOCUMENTS
5822314 A * 10/1998 Chater-Lea 370/337

10.1

Server

Server

reference data for obtaining the cryptographic key.

19 Claims, 8 Drawing Sheets

30.1

20

Remote
Computer

o 30y

Remote
Computer

U.S. Patent

Jul. 29, 2003 Sheet 1 of 8

10.1
Server 20
®
[
100
Server
i=1,j=1

Fig. 1

US 6,601,169 B2

30.1

Remote
Computer

o 304

Remote
Computer

U.S. Patent Jul. 29, 2003 Sheet 2 of 8 US 6,601,169 B2

307 3 20 50 10.
Remote pvate \;’rivate
Computer Internet 222 » Server
» RAM
15 15 11.i

Fig. 2

U.S. Patent Jul. 29, 2003 Sheet 3 of 8 US 6,601,169 B2
100
50
\
Private _____ | 1{0
Data .
Encryption Encrypted
Software —» Private
101k Data
\
Encryption __,
Key
k=1

Fig. 3

U.S. Patent Jul. 29, 2003 Sheet 4 of 8 US 6,601,169 B2

300 301 302 110 101.k

/[/ / /

b/ /

/ [
. Embedded Key
Value Encrypted Private Data +
yp v Embedded Roerferenoe Data

T~

™~102.m

cookie

v
W

m

Fig. 4

U.S. Patent Jul. 29, 2003 Sheet 5 of 8 US 6,601,169 B2

300 2 30,
Cookie Internet > ggmgﬁer
» RAM
N
31
300 %20\ 30,
] Remote
Cookie Internet > Computer
—»(Hard
Drive
32

Fig. 5b

U.S. Patent Jul. 29, 2003 Sheet 6 of 8 US 6,601,169 B2

30,/ 300 0 10.i
Remote C\ookie Ci)okie
Computer ————» Server
L RAM
11.i

Fig. 6a

) 20

304 3{)0 300 102
Remote Cookie C\ookie
Computer

————— » Server
L RAM

11.2

Fig. 6b

U.S. Patent Jul. 29, 2003 Sheet 7 of 8 US 6,601,169 B2

101.k

110
300 /3 02 \ 200
Encrypted 210
Nam;/ Pﬁv%g Data \
/| Encrypted Private Data D : Decrypted

Val . ecryption >Cryp

alue Encrypgon Key Eréglryptmn Software [Private

Data
cookie

Fig. 7a

U.S. Patent

300

Jul. 29, 2003 Sheet 8 of 8 US 6,601,169 B2
102.m 101.k
302 \110 200
/ \
Namg/| Banpisha .
/ Encrypted Private Data g .
Value Ingex E\ncrypﬁon Decryption
Index| Index-Key [Key” | Software
Association
105
21\0
Decrypted
cookie Private
Data

Fig. 7b

US 6,601,169 B2

1

KEY-BASED SECURE NETWORK USER
STATES

CONTINUING DATA

This is a CONTINUATION of, and incorporates by
reference in its entirety, U.S. application Ser. No. 09/545,
009, entitled SECURE INTERNET USER STATE CRE-
ATION METHOD AND SYSTEM WITH USER SUP-
PLIED KEY AND SEEDING and filed on Apr. 7, 2000 by
Wallace, which in turn is a CONTINUATION of, and
incorporates in its entirety, U.S. application Ser. No. 09/475,
638 entitled METHOD AND SYSTEM FOR CREATING
SECURE INTERNET USER STATES, filed on Dec. 30,
1999 by Wallace et. al. Further, this disclosure is related to,
and incorporates by reference in their entireties, U.S. appli-
cation Ser. No. 09/491,225 entitled KEY-BASED METHOD
AND SYSTEM FOR CREATING SECURE INTERNET
USER STATES, and Ser. No. 09/491,059 entitled KEY-
BASED METHOD AND SYSTEM WITH KEY INDEX
FOR CREATING SECURE INTERNET USER STATES,
both filed on Jan. 25, 2000 by Wallace et. al, and now
abandoned; and U.S. application Ser. No. XX/XXX,XXX
entitled SECURE NETWORK USER STATES filed on Oct.
31, 2001 by Wallace.

FIELD OF INVENTION

The present invention relates to key-based secure network
user states.

BACKGROUND OF THE INVENTION

Computer networks, such as the Internet, are well known
in the art, and may be based on the HTTP protocol. Because
HTTP is a stateless, or non-persistent, protocol, it is not
possible for such servers to differentiate between visits by a
specific user unless the server can somehow mark the user
to create a state or logical nexus between the server and the
user. Thus, each visit by an Internet user to a website is
unique, in that the website does not generally know the
identity of the user and/or other information about the user,
with the exception of a few details such as browser type, IP
address, etc. It should be noted, however, that when a user
has a fixed IP address, the user’s identity or information
about the user may be known by logical relation to a
database. But, since the majority of Internet users are
assigned dynamic IP addresses each time they connect to the
Internet, reliance on a user’s IP address to create a state is
problematic since their IP addresses may change each time
a user connects to the Internet.

To remedy the problem of HT'TP’s stateless nature, cook-
ies have been introduced for the specific purpose of creating
states. They may be temporary, in which case they are stored
only in memory; or persistent, in which case they are stored
in a file, typically on a hard drive, for period of time
measured by an expiration date field of a cookie. A cookie
may be thought of as a data structure stored in the memory
or on the storage device of a user’s computer, with the
cookie containing data, such as the user’s identity and/or
other information about the user for the purpose of creating
a state between the web server and the user. Thus, when a
user visits a particular website, a cookie stored on a user’s
computer may be sent from the user’s computer over the
Internet to the web server, which then extracts the data from
the cookie, processes the data and therewith creates a state.
For example, a user’s name may be stored in a cookie and
when that user visits a particular website, the data contained
in the cookie may be sent to the server and used to identify
the user.

10

15

20

25

30

35

40

45

50

55

60

65

2

More specifically and typically, when a user first visits an
Internet website, a web server associated with the website
may send a cookie to the user, which is then stored in the
memory or on the hard drive of a user’s computer, in
conjunction with the user’s Internet browser software. When
the user subsequently visits the website, the cookie may be
sent back to the server so that the user’s identity and/or other
information about the user that is stored in the cookie may
be known to the server via the data contained in the cookie,
such that a state between the user and the web server is
created.

However, the use of cookies has created a significant
problem relating to user privacy. Because these cookies are
stored on a user’s computer, especially when on a hard drive,
other servers may potentially access the cookies of other
servers and extract and read the user’s identity and/or other
information about the user that is stored in those cookies.
Such extracting and reading is considered by many as an
invasion of the user’s privacy.

An attempted solution to protect the privacy of Internet
users is provided in RFC 2109, HTTP STATE MANAGE-
MENT MECHANISM, having a publication date of
February, 1997. This solution involves a domain restriction
on reading and writing cookies, which must be implemented
in conjunction with a user’s particular browser software for
effectuation. For example, a web server associated with the
domain thissite.com may write a cookie having the domain
value .thissite.com. According to the domain restriction, this
cookie may only be read by a server within the specified
domain and related sub-domains. For example, while the
servers at thissite.com, L1.thissite.com, 1.2.1.1 .thissite.com,
etc. may read the cookie having the domain value
.thissite.com, the servers othersite.com, L1.othersite.com,
L2.L.1.othersite.com may not read the cookie having the
domain value .thissite.com. While this methodology appears
adequate on its face, practically it is not. It suffers from at
least four deficiencies.

A first problem is that this methodology requires software
vendors producing browser software to implement this
domain restriction. While mainstream vendors may attempt
to comply, other smaller vendors may not. Thus, failed
compliance may create a hole through which a user’s
privacy may be invaded via the unauthorized access of
cookies despite the existence of a domain restriction.

A second problem is that despite attempted compliance,
one or more bugs or exploits in the browser software may
exist and be exploited; thus, also creating a hole through
which a user’s privacy may be invaded. For example, as
identified in the article, COOKIE EXPLOIT, published by
COOKIE CENTRAL™ on Dec. 14, 1998, such a bug did
exist and a hole was potentially created and exploited. The
bug allowed cookies to be shared between unrelated
domains, despite the domain restriction implemented by
some if not all cookie-based Internet browser applications.
Basically, by concatenating an ellipsis (“ . . .) at the end of
the domain value set in a cookie, other unrelated servers
were able to read those cookies. Such a domain value may
be “.thissite.com . . . ” According to this article, at the time
of publication all mainstream Internet browser applications
were vulnerable to this exploit. Indeed, the article goes on to
assert that the most popular Internet browser applications,
INTERNET EXPLORER and NETSCAPE, were known to
be vulnerable on the WINDOWS, MAC and LINUX plat-
forms. Thus, the domain restriction was nullified and servers
participating in the exploitation of this bug were able to
access cookies from domains outside their own domain,
which is exactly what the domain restriction of RFC 2109

US 6,601,169 B2

3

was intended to prevent. Thus, the privacy of Internet users
benefiting from the use of cookies was unequivocally sub-
ject to invasion.

A third problem is that the cookies stored on a user’s hard
drive may be viewed by a person who is physically using the
user’s computer. The location and naming of cookie files
stored on a user’s hard drive are generally known or dis-
coverable by those skilled in the art. For example, it is well
known in the art that the browser software application
NETSCAPE™ that is developed and distributed by
NETSCAPE COMMUNICATIONS CORPORATION™
generally stores cookies in a user directory in a single file
named “cookie.txt”. One physically using a user’s computer
may open such a file with a simple text editor and directly
view and/or print the data contained in all cookies present,
which is clearly an invasion of the user’s privacy.

A fourth problem is that under certain conditions servers
may directly read cookie files outside the domain restriction
set in the cookies. It is generally known in the art that where
a user’s Internet browser software is configured to enable
JAVA script, specific files having a known name (such as,
“cookies.txt”) may be directly accessed, read and transmit-
ted to some location over the Internet by a “virus” embedded
within such JAVA script. Additionally, a devious program
may also contain such a virus that can do the same. Many
Internet users download and run executable programs from
the Internet knowingly and unknowingly risking the infec-
tion of a virus; and therefore, this risk is present and real.
The location of cookie files are generally known or discov-
erable to those ordinarily skilled in the art. Indeed, such a
virus may execute a “directory” command to obtain the
names of files and directories on a hard drive; for example,
a directory listing of files and directories in the
“c:\windows\Temporary Internet Files” directory or
“c:\Program Files\Netscape\Users” directory. The former
may produce cookie files produced by INTERNET
EXPLORER; while the latter may produce the names of the
directories of users of NETSCAPE (i.e., John), which may
be used to access the NETSCAPE cookie file, which in this
case would be “c:\Program
Files\Netscape\Users\John\cookies.txt”. Indeed, the surrep-
titious harvesting of cookies files is available to those
seeking it; and the privacy of Internet users are subject to
invasion.

Another attempted solution is practiced by some industry
participants. This attempted solution involves storing in
persistent cookies a primary key (or database index) to a
database containing data records of user information, rather
than storing the private data in the persistent cookies. Thus,
the unauthorized viewing or reading of a primary key does
not appear to be an invasion of privacy. While some,
including the public, may consider such a practice as suffi-
cient in protecting user privacy from invasion, practically it
is insufficient and provides a false sense of security.

By definition, primary keys are unique within a defined
universe. Thus, within a defined universe of Internet users,
a single primary key uniquely identifies one or more data-
base records that relate to a specific user. Where the contents
of a database are known or obtained by a party (i.e.,
possessed, or hacked into and harvested), an Internet user,
within the defined universe, visiting a website associated
with that party risks an invasion of privacy. If the user has
a primary key stored in a persistent cookie on the user’s hard
drive, access to that cookie may allow information relating
to the user in the database to be referenced and used by the
party to establish an undesired state between the website and
the user. In addition, other information about the user that

10

15

20

25

30

35

40

45

50

55

60

65

4

may be harvested during the visit from other cookies stored
on the user’s hard drive may be combined with the user’s
data in the database. For example, the database may only
contain the user’s name, address and phone number. But
data harvested from the user’s other cookies may reveal that
the user had visited a website associated with herbal treat-
ments for those with HIV, a website associated with HIV
treatment centers in the user’s town and a website associated
with HIV research. By combining this health-related data
with the database data, the name, address and phone number
of a person who appears to have HIV is now known. Where
the person does in fact have HIV and sought to keep his or
her ailment private, this combined information results in the
person’s privacy being clearly invaded.

Therefore, there is a need for key-based secure network
user states.

SUMMARY OF THE INVENTION

An object of the present invention is to provide key-based
secure network user states.

Another object of the present invention is to provide
key-based secure network user states that assist in minimiz-
ing at least one of the problems mentioned above.

The environment of the present invention includes at least
one server and at least one computer communicatively
connected together via an HTTP-based network, where user
data is used to establish a state between a server and a user
operating a computer.

In an exemplary aspect of the invention, a method of
establishing by a server a secure state between the server and
a user operating a computer, includes encrypting user data
with a cryptographic key; embedding, into the encrypted
user data, the cryptographic key or reference data associated
with the cryptographic key; storing the encrypted user data
with embedded key data in a cookie; and sending the cookie
to a computer; such that subsequently, a secure state between
the server and the user is established by receiving the cookie
from the computer; extracting, from the cookie, the
encrypted user data and embedded key data; decrypting,
using said key data, the encrypted user data; and establishing
the secure state between the server and the user based on the
decrypted user data.

In another exemplary aspect of the invention, reference
data is an index, pointer or seed, with which a particular
cryptographic key may be obtained (e.g., referenced,
accessed, generated, etc.).

Other features and advantages of the present invention
will be apparent from the accompanying drawings and the
detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings in which like references indicate similar elements
and in which:

FIG. 1 shows the general environment of the present
invention, in which one or more servers are connected to one
or more remote computers via the Internet or other HTTP-
based network.

FIG. 2 shows the sending of private data by a remote
computer over the Internet to a server according to the
present invention.

FIG. 3 shows the inputting of private data and a key into
an encryption function to produce an encrypted format of the
private data.

US 6,601,169 B2

5

FIG. 4a shows encrypted private data and respective the
cryptographic key stored in a cookie.

FIG. 4b shows encrypted private data and an index to the
respective cryptographic key stored in a cookie.

FIG. 5a shows a non-persistent cookie sent over the
Internet to a remote computer that stores it in the remote
computer’s RAM.

FIG. 5b shows a persistent cookie sent over the Internet
to a remote computer that stores it on a hard drive.

FIG. 6a shows a remote computer sending a cookie over
the Internet to a first server.

FIG. 6b shows a remote computer sending a cookie over
the Internet to a second server.

FIG. 7a shows encrypted private data and the respective
cryptographic key extracted from the value field of a cookie
and used to decrypt the encrypted private data.

FIG. 7b shows encrypted private data and an index to the
respective cryptographic key extracted from the value field
of a cookie and used to decrypt the encrypted private data.

DETAILED DESCRIPTION

FIG. 1 shows the environment of the present invention, in
which one or more servers 10.1-10.a (for a=1) are opera-
tively connected via the Internet 20 (or other network) to one
or more remote computers 30.1-30.b (for b=1).

Generally, the present invention is carried out via software
executing on one or more servers, software executing on one
or more remote computers, and user input via one or more
input devices operably connected to a user’s remote com-
puter.

The private data (or “user data”) of a user is herein
broadly defined. This includes the user’s IP address, name,
mailing address, email address, age, sex, credit card
information, login/password combinations, preferences,
hobbies, education level, browsing (click) history, browsing
history with click frequency, browsing preferences, assigned
primary keys, assigned GUIDs, etc. In essence, private data
relating to a user includes any information that may in and
of itself be personal and private, as well as information that
may be personal and private when combined with other data
relating to the user. Thus, any data particular to a user may
be considered private data.

In an exemplary aspect of the invention, a remote com-
puter comprises an operable Internet connection, Internet
software, one or more computer memories for readably
storing said Internet software, one or more input devices and
a CPU for executing said Internet software, wherein said
computer Internet connection, each of said one or more
computer memories, each of said one or more input devices
and said computer CPU are operatively connected to each
other by at least one bus. Preferably, a remote computer has
at least two computer memories: RAM and a hard drive; and
at least two input devices: a pointing device and a keyboard.

In a further exemplary aspect of the invention, a server
comprises an operable Internet connection, one or more
server memories for readably storing server software and
cryptography software, and a CPU for executing said server
software and said cryptography software, wherein said
server CPU, each of said server memories and said server
Internet connection are operatively connected to each other
by at least one bus. Preferably, a server has at least two
server memories: RAM and a hard drive. However, since
software may be stored solely in RAM, the required soft-
ware may be loaded into RAM from a removable storage
device (e.g., hard drive) or storage medium (e.g., diskette or

10

15

20

25

30

35

40

45

50

55

60

65

6

data cartridge), with the device or medium subsequently
being removed.

The server software and cryptography software executing
on a server may be implemented with any compatible
programming language and/or script that functionally effec-
tuates the present invention as claimed.

The cryptography software according to the present
invention may perform encryption and/or decryption.
Generally, the cryptography software performs both encryp-
tion and decryption; however, where a first server only
encrypts data and other related servers decrypt data, cryp-
tography software need not perform both. The cryptography
software may utilize any key-based encryption algorithm, or
combination of algorithms in whole or in part, known in,
taught by or apparent in light of the prior art that effectuates
the present invention as claimed. However, it is essential that
the overall functionality of the encryption algorithm used is
one-to-one, in that the initial data results from decryption of
an encrypted format of the initial data. An illustrative set of
example prior art encryption algorithms and techniques from
which one may draw one or more, in whole or in part, in
effectuating the present invention are RSA; DSA; Diffie-
Hellman; Public-Key Cryptography; PGP; Signature Algo-
rithms; DES; triple-DES; IDEA; TDEA; Blowfish; Twofish;
Yarrow; Square; TEA; CAST-128; RC4; Safer SK-128;
Block Ciphers, including TWOFISH; Stream Ciphers;
MD2, MD4, MD5 and other techniques based on the Secure
Hash Standard (SHS) or Secure Hash Algorithm (SHA-1);
Digital Timestamps Supporting Digital Signatures; Secret
Sharing Schemes, including Blakley’s Secret Sharing
Scheme, Shamir’s Secret Sharing Scheme and Visual Secret
Sharing Schemes; Interactive Proofs; Zero-Knowledge
Proofs; Message Authentication Codes; Quantum cryptog-
raphy; and known or apparent variations and combinations
thereof.

In a preferred embodiment, PUKALL’s 128-bit stream
cipher algorithm is used in effectuating the present
invention, as it is known to execute with relatively great
speed with small text-based data; was conveniently pub-
lished by ALEXANDER PUKALL in 1991 (see http:/
www.multimania.com/cuisinons/pcl/index.html); and by its
express terms, may be used freely even for commercial
applications. Use of this algorithm is highly suggested
because of its fast processing speed, high encryption
strength (128-bit keys) and minimal cost (free).

According to the present invention, an encryption key is
used to encrypt private data relating to the user. An encryp-
tion key may be any number of bits consistent with the
particular encryption algorithm used. However, it is impor-
tant to note that the larger the key size, the stronger the
encryption. The most common sizes of encryption keys are
evenly divisible by eight (e.g., 40bit, 56bit, 64bit, 80bit,
128bit, 160bit, 256bit, 512bit, 1024bit, etc.); however other
sizes may be used to the extent desirable and consistent with
the particular encryption algorithm used. In a preferred
embodiment, 128bit encryption keys are used. The choice of
which encryption algorithm/technique, variation or combi-
nation thereof to use, including the size of the keys utilized,
will depend on a number of factors, each of which may vary
for each application of the present invention. Such factors
include speed of processing, strength of encryption and
associated cost, including the cost of using and/or imple-
menting the cryptography software (e.g., licensing fees,
coding thereof). Such choice based on the criteria above will
be apparent to one ordinarily skilled in the art. Further, more
than one encryption key may be used for encrypting private
data, such that a different key, or combination, may be used
for each of two or more users.

US 6,601,169 B2

7

In an exemplary embodiment of the invention, a key used
to encrypt private data may be subsequently embedded
within the encrypted private data to be stored in a cookie.
Any embedding technique may be employed, as long as an
embedded key may be subsequently extracted from the
encrypted private data for decryption of the encrypted
private data. For example, a key may be concatenated to the
head of the encrypted data; inserted in the middle of the
encrypted data; concatenated at the tail of the encrypted
data; or distributed through the data symmetrically or asym-
metrically. Further, the key may be embedded in its initial
format or even hidden by first applying some form of coding
and/or encryption. It is important to note that where keys are
stored in the cookies, keys need not be stored on a server.

In an alternative embodiment of the present invention,
reference data (e.g., an index, a pointer, a seed, etc.) asso-
ciated with a key may be subsequently embedded within the
encrypted private data to be stored in a cookie. While any
type of reference data may be used with the present
invention, a single lower case alphabetic character is
preferred, as it resembles a typical character found in data
encrypted with the PUKALL algorithm. Further, any embed-
ding technique may be employed, as long as the embedded
reference data may be subsequently extracted from the
encrypted private data for obtaining the particular encryp-
tion key needed to decrypt the encrypted private data. For
example, reference data may be concatenated to the head of
the encrypted data; inserted in the middle of the encrypted
data; concatenated to the tail of the encrypted data; or
distributed through the data symmetrically or asymmetri-
cally. Further, reference data may be embedded in its initial
format or even hidden by first applying some form of coding
or encryption. According to an exemplary embodiment of
the invention, reference data may be an index assigned to the
9" position of the encrypted private data, with the data
initially at the 9”—n™ position being shifted one position
(i.e., here, one character place or 8 bits) to accommodate the
insertion.

It is important to note that where a particular key used to
encrypt private data is neither stored in a cookie nor deriv-
able based thereon, that key must be stored, in some form,
on the server, so that reference to the key may be effectuated
with its associated reference data. For example, a set of 10
keys may be stored on the server either in RAM or on a
storage device, with the keys being associated with reference
data (e.g., an index).

According to a preferred embodiment, the lower case
alphabetic characters d through m (d—m) may be conve-
niently used as indexes. Since the ASCII-based decimal
values of these indexes are 100 through 109, respectively;
the respective decimal values may be referenced and then
the value 100 subtracted therefrom, respectively; resulting in
indexes ranging from O to 9, with each index associated with
one of the encryption keys. The encryption keys may be
stored as an array of 16-character keys, with each key being
referenced via one of the indexes.

For example, the lower case alphabetic character d has an
ASClII-based decimal value of 100. Subtracting 100 from
this value (100 minus 100) produces 0. The value 0 may then
be used to reference a first encryption key in array contain-
ing 10 encryption keys.

The present invention is now described in operation:

As shown in FIG. 2, a user’s computer may contact a
server according to the present invention by sending a
request for data, which may contain private data 50, via the
user’s computer 30.j over the Internet 20 to a server 10.1.

10

15

20

25

30

35

45

55

60

65

8

After receiving the private data 50, a server 10.1 causes the
data 50 to be stored in a memory 11.i (preferably RAM) for
subsequent encryption. The user may contact a server by
entering the URL or Internet address of the server or by
clicking or selecting a bookmark or hyperlink directed to the
server. Subsequently, the user may continue to enter private
data 50 relating to the user, which may include any private
data as previously defined, which may include filling out a
form, via keyboard entry, displayed on a display device via
browser software. Submitted form data may include name
data, email address data, etc., which may be submitted via a
submit button. Submitted form data may be posted to a CGI
program or script, or similar program or script, located on
the server via transmission over the Internet to the server.

As discussed above, the clicking history of a user, as that
user peruses web pages, banners and/or links may also be
considered private data. Thus, the submission of data may
occur over one or more transactions and is not necessarily
limited to submitted form data. Further, as expressly defined
above, private data may be an assigned primary key; thus,
the sending of private data by a user is not necessarily
required by the present invention.

Private data of a user, in whole or in part, represents a
state between the user and the server, and thus dictates, in
whole or in part, the private data to be stored in a cookie by
the server. For example, a user may send his last name,
which may be “Gossage”. Preferably, private data 50 may be
transferred between the user’s computer 30.j and server 10.1
via a secured connection 15, such as SSL.

It should be noted that some precoding and decoding may
be required with the particular encryption algorithm
employed. For example, the private data may be concat-
enated in a particular order to form a string having fixed or
variable length fields. Another form of coding is binary/text
conversion, and may arise, for example, where a particular
encryption algorithm/technique requires input data in binary
format and the input data is initially in text format; and may
also be optionally employed after output.

Any binary/text conversion and/or coding may be option-
ally employed prior to input, as well as subsequent to output,
as long as one-to-one correspondence between the precoded
and decoded data is preserved.

As shown in FIG. 3, encryption of private data 50 is
effectuated by inputting the private data 50 and an encryp-
tion key 101.k (for k>1) into encryption function 100, which
produces encrypted private data 110. And of course, where
more than one encryption key is employed (for k>1), one or
more keys may be selected in any desired way (e.g., random,
sequential, etc.). According to an exemplary aspect, the
PUKALL encryption algorithm accepts a 16-character string
as a 256-bit key, such as the 16-character string “Rem-
saalps!123456”. Encrypting the value “Gossage” with this
key via the PUKALL algorithm may produce the value
“VaM}7i0c+07

Next, the encryption key or reference data associated with
the encryption key is embedded into the encrypted private
data prior to storage in a cookie. As described above, any
known or apparent embedding technique may be employed
as long as an embedded key or reference data may be
subsequently extracted and used to decrypt the encrypted
private data. For example, where the lower case character d
(which may provide an index value 0) is associated with the
encryption key “Remsaalps!123456”, embedding the lower
case character d into the encrypted private data may produce

the value “3%M}7;Oc+dO”; while an exemplary embedding
of an encryption key into encrypted user data may produce

the value “Remsaalps!123456%4M}7; e+

US 6,601,169 B2

9

There are six parameters that may be assigned to a cookie:
(1) the name of the cookie, (2) the value of the cookie, (3)
the expiration date of the cookie, (4) the path the cookie is
valid for, (5) the domain the cookie is valid for, and (6) a flag
representing the need for a secure connection to exist to use
the cookie.
According to the present invention, the first two param-
eters must be explicitly assigned values: (1) the name of the
cookie, and (2) the value of the cookie. The next four
parameters may be optionally explicitly assigned values: (3)
the expiration date of the cookie, (4) the path the cookie is
valid for, (5) the domain the cookie is valid for, and (6) a flag
representing the need for a secure connection to exist to use
the cookie. These optional parameters may be explicitly
assigned values to improve security and/or functionality, and
are discussed in further detail herein.
Generally, creating a cookie involves replicating the
HTTP cookie header in some fashion so that browser
software executing on a remote computer will recognize and
store the cookie.
According to the present invention, a cookie is named by
assigning name data to the name field of a cookie, such as
the name “ywi”. Further, the encrypted private data with the
embedded key or reference data is stored in the value field
of a cookie.
The optional parameter (3), the expiration date of the
cookie, may be assigned to the expires field of a cookie to
direct browser software executing on a remote computer
whether to store the cookie on a storage device, e.g., a hard
drive. If not explicitly assigned a value, the expires field
defaults to end-of-session and the browser preserves the
cookie only in memory (RAM) until the browser session is
closed. Such a value may be a past date, or a future date such
as “Mon, 09-Dec-2002 13:46:00 GMT”, which if processed
prior to expiration, may be stored in a storage device. A
resulting HTTP header representing this cookie may be as
follows:
Content-type:
text/html

Set-Cookie:
ywi="“%M}7;Oc+0O7; path=/;
expires=Mon, 09-Dec-2002 13:46:00 GMT

Upon receiving this header, browser software executing
on a remote computer may store the cookie to a storage
device.

The optional parameter (4), the path the cookie is valid
for, may be explicitly assigned a value, such as
“/computerstore”. This causes to be set the URL path the
cookie is valid within. Thus, pages outside the path
“/computerstore” cannot read or use the cookie having this
value. Explicitly assigning a value to this parameter would
be advantageous where multiple websites exist within a
domain, such as www.thissite.com and www.thissite.com/
otherparty, and sharing of cookies between the servers
associated therewith is undesired. If not specified, the value
defaults to the path of the document creating the cookie.

The optional parameter (5), the domain the cookie is valid
for, may be explicitly assigned a value, such as “.thissite.
com”. Where a website uses multiple servers within a
domain, it may be desirable to make the cookie accessible to
pages on any of those servers. Thus, a cookie may be
assigned to an individual server or to an entire Internet
domain. Here, all servers within the domain www.thissite-
.com may access the cookie so defined. The default value if
not explicitly set is the full domain of the document creating
the cookie.

10

15

20

25

30

40

45

50

55

60

65

10

The optional parameter (6), a flag representing the need
for a secure connection to exist to use the cookie, should
only be used under a secure sever condition, such as SSL.
Where secure transactions are implemented, this parameter
heightens security between a server and a remote computer.
If not explicitly set to TRUE, this defaults to FALSE.

In sending the cookie to a remote computer, the server
effectuates the creation of an HTTP header which is sent
along with a requested page. This causes the value of the
cookie to be sent to a remote computer, received thereby, and
in conjunction with browser software executing thereon,
stored in memory or on a storage device, such as a hard
drive.

As shown in FIG. 4, according to the present invention, a
cookie 300 has at a minimum a name field 301 with a value
representing the name of the cookie, such as “ywi”. Further,
the cookie 300 has a value field 302 containing the encrypted
private data 110, with an embedded key 101.k or reference
data 102.m.

It is important to note that cookies, as they are imple-
mented today, are transferred between a server and a
browser as an HTTP header and the specifications for this
header are explicitly set forth in RFC 2109, which has been
readily and freely available over the Internet. Further, the
setting and reading of cookies can be effectuated with a
plurality of languages and/or scripts, and the particular
choice of language and/or script is not important to the
present invention insofar as it does not deviate from the
teachings of the invention. Examples of languages and
scripts are as follows: JavaScript, PERL, LiveWire, ASP,
Virtual Basic (“VB”) and VBScript. Further, custom soft-
ware may be used, via C, C++, etc., to the extent that a
compatible HTTP header is created.

As shown in FIGS. 54 and 5b, a cookie 300 is sent over
the Internet 20 to a user’s remote computer 30.j, which
stores the cookie 300 in a read-write device, which may be
the remote computer’s RAM 31 or storage device 32, such
as a hard drive.

When a user subsequently requests a page from the server
or a related server, i.e., a request from the browser to a
server, the cookie header is modified slightly from that
which created the cookie. For example, the header may be
as follows:

Content-type:

text/html

Set-Cookie:

ywi=“¥%M}7;0+d0O”

Here, a server is made aware of the cookie named “ywi”
having the value of the encrypted private data with embed-
ded reference data. Generally, retrieving a cookie from a
header does not require actual reading of the HTTP Cookie:
header, since most languages automatically read this header
for the programmer and make it accessible through a pro-
gramming variable or object. As with creating a cookie,
accessing a cookie may be effectuated with a plurality of
languages and/or scripts, and the particular choice of lan-
guage and/or script is not important to the present invention
insofar as it does not deviate from the teachings of the
present invention. Examples of languages and scripts are
discussed above.

As shown in FIG. 64, a user’s remote computer 30.j may
send a cookie 300 back to server 10.i that originally sent the
cookie 30.j to the user’s computer 30.j, for storage of the
cookie 30.j in server memory 11.1 for subsequent processing.

As shown in FIG. 6b, a user’s remote computer 30.j may
send a cookie 300 to a server 10.2, which is not the server
that originally sent the cookie 300 to the user’s computer

US 6,601,169 B2

11

30,. As also shown FIG. 6b, server 10.2 stores cookie 30.j
in server memory 11.2 for subsequent processing.

Once the value of the cookie is accessed, the key or
reference data may be extracted, with reference data being
used to obtain the original key when applicable. The original
key is used to decrypt the encrypted private data by inputting
the key and the encrypted private data into the particular
encryption function employed.

As shown in FIG. 74, in an exemplary aspect of the
invention, from the value field 302 of a cookie 300 the
encrypted private data 110 and associated encryption key
101.k are inputted into decryption function 200, which
provides decrypted private data 210.

As shown in FIG. 7b, in an alternative aspect of the
invention, from the value field 302 of a cookie 300 the
encrypted private data 110 and reference data 102.m are
extracted, with the reference data 102.m used to obtain the
associated encryption key 101.k (e.g., via an Index-Key
Association 105). The encrypted private data 110 and
encryption key 101.k may then be utilized with decryption
function 200 to produce as output decrypted private data
210.

Thus, with decrypted private data 210, a state may be
created between the server and the remote computer of a
user. For example, the decrypted data may be the user’s last
name, such as “Gossage” wherein the server may now know
the identity of the user; thus creating a state between the
server and the user.

As can be seen, the present invention efficiently protects
the privacy of Internet users by protecting private user data
available for establishing Internet user states.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and/or changes may be made thereto without departing
from the broader spirit and scope of the invention. For
example, where the size of a user key, as submitted by a user,
is equal to the size required of an encryption key, the user
key may be used directly as an encryption key. Accordingly,
the specification and drawings are to be regarded in an
illustrative and enabling rather than a restrictive sense.

Therefore, we claim:

1. In a system comprising a server and a computer
communicatively connected together via an HTTP-based
network, a method of establishing by the server a secure
state between the server and a user operating the computer,
said method comprising:

encrypting, using a cryptographic key, user data;

embedding, into the encrypted user data, key data com-
prising one of the cryptographic key and reference data
associated with the cryptographic key;

storing, in a cookie, the encrypted user data having the
key data embedded therein;

naming the cookie by storing name data in the cookie;

sending the cookie to the computer for storage thereby;

receiving the cookie from the computer;

extracting, from the cookie, the encrypted user data
having the key data embedded therein;

extracting, from the encrypted user data having the key
data embedded therein, the encrypted user data and said
key data;

decrypting, using said key data, the encrypted user data;
and

establishing the secure state between the server and the
user based on the decrypted user data.

10

15

20

25

30

35

40

45

50

55

65

12

2. The method of claim 1, further comprising

before said encrypting, receiving user information from
the computer;

wherein the user data is based on the user information.

3. The method of claim 1, wherein said key data com-
prises the cryptographic key, and decrypting the encrypted
user data comprises decrypting, using the cryptographic key,
the encrypted user data.

4. The method of claim 1, wherein the key data comprises
reference data, and decrypting the encrypted user data
comprises

obtaining, with the reference data, the cryptographic key,

and

decrypting, using the cryptographic key, the encrypted

user data.

5. The method of claim 4, further comprising

storing the cryptographic key in a memory;

wherein the reference data is one of an index and a

pointer, and obtaining the cryptographic key comprises
accessing, using the reference data, the cryptographic
key from the memory.

6. In a system comprising a server and a computer
communicatively connected together via an HTTP-based
network, a method of establishing by the server a secure
state between the server and a user operating the computer,
said method comprising:

receiving, from the computer, a cookie comprising
encrypted user data having key data embedded therein;

extracting, from the cookie, the encrypted user data and
the key data;

decrypting, using said key data, the encrypted user data;

and

establishing the secure state between the server and the

user based on the decrypted user data.

7. The method of claim 6, wherein the key data comprises
a cryptographic key, and decrypting the encrypted user data
comprises decrypting, using the cryptographic key, the
encrypted user data.

8. The method of claim 6, wherein the key data comprises
reference data, and decrypting the encrypted user data
comprises

obtaining, with the reference data, a cryptographic key,

and

decrypting, using the cryptographic key, the encrypted

user data.

9. The method of claim 8, wherein the reference data is
one of an index and a pointer, the server comprises a
memory containing a cryptographic key stored in associa-
tion with the one of an index and a pointer, and obtaining the
cryptographic key comprises accessing, using the reference
data, the cryptographic key from the memory.

10. For use in a server communicatively connected with
a computer via an HTTP-based network, a computer read-
able medium comprising instructions for establishing a
secure state between the server and a user operating the
computer, by causing the server to perform the actions of:

encrypting, using a cryptographic key, user data;

embedding, into the encrypted user data, key data com-
prising one of the cryptographic key and reference data
associated with the cryptographic key;

storing, in a cookie, the encrypted user data having the
key data embedded therein;

naming the cookie by storing name data in the cookie;
sending the cookie to the computer for storage thereby;

US 6,601,169 B2

13

receiving the cookie from the computer;

extracting, from the cookie, the encrypted user data
having the key data embedded therein;

extracting, from the encrypted user data having the key
data embedded therein, the encrypted user data and said
key data;

decrypting, using said key data, the encrypted user data;
and

establishing the secure state between the server and the

user based on the decrypted user data.

11. The computer readable medium of claim 10, wherein
the actions further comprise:

before said encrypting, receiving user information from

the computer;

wherein the user data is based on the user information.

12. The computer readable medium of claim 10, wherein
said key data comprises the cryptographic key, and decrypt-
ing the encrypted user data comprises decrypting, using the
cryptographic key, the encrypted user data.

13. The computer readable medium of claim 10, wherein
the key data comprises reference data, and decrypting the
encrypted user data comprises

obtaining, with the reference data, the cryptographic key,

and

decrypting, using the cryptographic key, the encrypted

user data.

14. The computer readable medium of claim 13, wherein
the actions further comprise:

storing the cryptographic key in a memory;

wherein the reference data is one of an index and a

pointer, and obtaining the cryptographic key comprises
accessing, using the reference data, the cryptographic
key from the memory.

15. For use in a server communicatively connected with
a computer via an HTTP-based network, a computer read-
able medium comprising instructions for establishing a

14

secure state between the server and a user operating the
computer, by causing the server to perform the actions of:

receiving, from the computer, a cookie comprising
encrypted user data having key data embedded therein;

extracting, from the cookie, the encrypted user data and
the key data;

decrypting, using said key data, the encrypted user data;
and

10 establishing the secure state between the server and the

user based on the decrypted user data.
16. The computer readable medium of claim 15, wherein
the actions further comprise:

before said encrypting, receiving user information from
the computer;

wherein the user data is based on the user information.

17. The computer readable medium of claim 15, wherein
said key data comprises the cryptographic key, and decrypt-
ing the encrypted user data comprises decrypting, using the
cryptographic key, the encrypted user data.

18. The computer readable medium of claim 15, wherein
the key data comprises reference data, and decrypting the
encrypted user data comprises

obtaining, with the reference data, the cryptographic key,

and

decrypting, using the cryptographic key, the encrypted

user data.

19. The computer readable medium of claim 18, wherein
the actions further comprise:

storing the cryptographic key in a memory;

wherein the reference data is one of an index and a

pointer, and obtaining the cryptographic key comprises
accessing, using the reference data, the cryptographic
key from the memory.

#* #* #* #* #*

